Infektionsprozesse unterbinden

Wie bewegen sich Zellen effektiv vorwärts?

HZI-Forscher haben einen Mechanismus aufgeklärt, wie Zellen mithilfe von Proteinfilamenten Kraft erzeugen und sich effektiv bewegen.

Melanomzelle bei der Wanderung

Melanomzelle bei der Wanderung, deren Bewegung nach oben links durch Formin-Proteine (grün) unterstützt wird. | HZI/Frieda Kage

Die Zellen des menschlichen Körpers besitzen in ihrem Inneren ein flexibles Gerüst, das Zytoskelett, welches unter anderem aus Aktinfilamenten besteht und sich in stetigem Auf- und Abbau befindet. So können sich Zellen verformen oder bewegen. Diese Fähigkeit ist zum Beispiel für die Embryonalentwicklung, die Wundheilung und ein funktionierendes Immunsystem wichtig. Dabei müssen Zellen Energie und Kraft aufwenden, um sich durch Gewebe zu bewegen. Beispielsweise dringen Immunzellen in alle Bereiche unseres Körpers vor, um Krankheitserreger zu finden und zu bekämpfen. Umgekehrt können auch manche Erreger das Zytoskelett missbrauchen, um in Zellen einzudringen.

Molekulare Grundlagen aufgeklärt

Forscher des Helmholtz-Zentrums für Infektionsforschung (HZI) und der Technischen Universität Braunschweig haben nun die molekularen Grundlagen dafür aufgeklärt, wie Zellen sich effektiv vorwärtsbewegen können durch die Ausbildung von schubkräftigen Ausstülpungen der Zellmembran. Die Forscher konnten mit der CRISPR/Cas-Technologie erstmals die genaue Funktion einer speziellen Proteinfamilie, der Formine, bei der Ausbildung dicht verzweigter Aktinnetzwerke bestimmen. Die Braunschweiger Wissenschaftler kooperierten dabei eng mit der Medizinischen Hochschule Hannover (MHH) und der Universität Leipzig.

Aktin-Myosin-Filamente sind wie „Muskeln“ der Zelle

„Wenn sich Zellen durch Gewebe des Körpers bewegen, bilden sie dazu verschiedene Ausstülpungen an ihrer Vorderseite aus: segelartige Lamellipodien, fingerförmige Filopodien, aber auch bläschenartige Ausstülpungen“, sagt Klemens Rottner, Leiter der HZI-Arbeitsgruppe „Molekulare Zellbiologie“ und Professor am Institut für Zoologie der Technischen Universität Braunschweig. Das Zytoskelett der Zellen spielt dabei eine entscheidende Rolle. Es ist allerdings im Gegensatz zum Knochenskelett kein starres Stützsystem, sondern ein dynamisches Geflecht. Um ihre Form zu verändern oder sich auszubreiten, brauchen Zellen spezielle Mikrofilamente winzige, nur nanometerdicke Fasern aus dem Strukturprotein Aktin. Durch das Zusammenspiel der Aktinfilamente mit speziellen Myosin-Proteinen wird Zellbewegung möglich. „Die Aktin-Myosin-Filamente sind gewissermaßen die Muskeln der Zelle“, sagt Rottner.

Modell eines zellulären Vesikels

Lebende Zellen müssen sich aktiv verformen können, sonst könnten sie sich beispielsweise nicht teilen. An der TUM haben der Biophysiker Professor Andreas Bausch und sein Team ein synthetisches Zellmodell entwickelt, um grundlegende Gesetzmäßigkeiten dieser Zellmechanik zu erforschen.

weiterlesen

Im Detail betrachtet besteht ein Lamellipodium aus quervernetzten und parallel ausgerichteten Bündeln von Aktinfilamenten, die von einer dünnen Zellmembran umschlossen sind. Diese Aktinfilamente sind am Vordersaum der Ausstülpung in der Zellmembran verankert und schieben sie durch den stetigen Anbau von Aktinbausteinen vorwärts, während sie an ihrer Rückseite fortwährend abgebaut werden. Durch diesen kontinuierlichen Umbau von Aktinfilamenten bewegt sich die Zelle vorwärts.

Weitere wichtige Komponente nachgewiesen

Bisher war bekannt, dass ein bestimmter Proteinkomplex für den Aufbau des Aktinnetzwerks in den Lamellipodien verantwortlich ist – der sogenannte Arp2/3-Komplex. Die Forscher konnten nun eine weitere wichtige Komponente nachweisen: An den schnell wachsenden Enden der Aktinfilamente binden Proteine aus der Familie der Formine. „Die Rolle dieser Proteine in Lamellipodien war bislang nicht klar. Man dachte, sie würden lediglich die Geschwindigkeit steuern, mit der Bausteine an die Filamente des Netzwerks angebaut werden“, sagt Rottner. Jedoch fanden die Autoren der Studie heraus, dass diese Proteine vor allem die Filamentdichte und die Stabilität des Aktinnetzwerks regulieren. Anders als der Arp2/3-Komplex scheinen diese Formine zudem das wachsende Aktinfilament mit der Zellmembran zu verbinden, wodurch die entstehende Kraft direkt auf die Membran übertragen werden kann und somit eine effiziente Vorwärtsbewegung der Zelle gewährleistet wird.