Röntgenfluoreszenz-Bildgebung weiterentwickeln

Neue medizinische Bildgebung
lz
Experimentierhalle PETRA III
Experimentierhalle PETRA III © DESY 2012
Newsletter­anmeldung

Bleiben Sie auf dem Laufenden. Der MT-Dialog-Newsletter informiert Sie jede Woche kostenfrei über die wichtigsten Branchen-News, aktuelle Themen und die neusten Stellenangebote.


Bei der Röntgenfluoreszenz-Bildgebung könnte es sich um eine Schlüsselanwendung für das Verständnis medizinischer und pharmakologischer Fragestellungen handeln. Nun soll sie mithilfe einer Kooperation weiterentwickelt werden.

Wie bewegen sich Immunzellen in entzündlichen Körperregionen? Und wie gelangen neu entwickelte Wirkstoffe dorthin, wo sie beispielsweise Tumore bekämpfen können? Die an der Universität Hamburg weiterentwickelte Methode der Röntgenfluoreszenz-Bildgebung erlaubt bei diesen Fragestellungen neuartige Einblicke. Nun will ein Team der Universität Hamburg den Zugang zu dieser Technologie verbessern, gemeinsam mit Siemens Healthineers und der TU Berlin. Das Projekt wird vom Bundesministerium für Bildung und Forschung gefördert.

Bisher nur Großanlagen

An der Universität Hamburg forscht ein Team um den Experimentalphysiker Prof. Dr. Florian Grüner daran. Trotz erster Durchbrüche bleibt ein bisher ungelöstes Problem: Die Bildgebungsmethode kann bisher nur an Teilchenbeschleuniger-basierten Synchrotronanlagen angewendet werden, weil nur diese Großanlagen in der Lage sind, die speziellen, für die Bildgebung erforderlichen Parameter der Röntgenstrahlen zu liefern. Damit aber bleibt der Zugang zu dieser vielversprechenden Bildgebung stark eingeschränkt – etwa für den globalen Süden.

Konventionelle Röntgenröhren doch geeignet?

Gemeinsam mit Forscherinnen und Forschern der TU Berlin um Prof. Dr. Birgit Kanngießer hat das Team der Universität Hamburg deswegen begonnen zu untersuchen, ob konventionelle Röntgenröhren möglicherweise doch, entgegen der bisherigen Annahmen, die erforderliche Strahlqualität liefern könnten. Diese Röntgenquellen sind weltweit im Einsatz. Bisher schien die Qualität solcher Röntgenstrahlen nicht ausreichend, man konnte die schwachen Signale der Röntgen-Fluoreszenz nicht nachweisen. Nun gelang dem UHH-Team der experimentelle Nachweis, dass ein Röntgen-Fluoreszenz-Spektrum, gemessen mit einem ersten Labor-Prototypen im CFEL-Labor, genauso aussieht als wäre das Spektrum an einem Synchrotron gemessen worden. Allerdings dauerte die Messzeit mit dem Laborsystem noch sehr lange – circa um den Faktor 15 länger als am Synchrotron bei gleicher Qualität.

Kooperation soll Lücke schließen

Genau diesen Faktor möchte das Team nun in einer Kooperation mit dem Team von Dr. Jörg Freudenberger von Siemens Healthineers und mit Hilfe einer BMBF-Förderung (ErUM-Transfer) überwinden. Prof. Dr. Florian Grüner und Dr. Jörg Freudenberger kennen sich bereits aus dem früheren Münchener Exzellenzcluster MAP. Siemens Healthineers ist weltweit führend bei Hochleistungs-Röntgenstrahlern – und genau die soll den verbleibenden Faktor realisieren.

Weltweiter Einsatz als Ziel

„Die enge Kooperation mit Siemens Healthineers wird helfen, den großen Schritt von der Grundlagenforschung hin zu einer Anwendung in der Gesellschaft zu meistern. Nur in Konstellation dieser Partnerschaft lässt sich das übergeordnete Ziel erreichen, die Röntgenfluoreszenz-Bildgebung in vielen, weltweit verteilten Laboren anwenden zu können – was sicherlich das Innovationspotential dieser Bildgebung deutlich vergrößern wird. Schließlich gilt: Je mehr Daten vorhanden sind, desto mehr Ideen werden geboren“, sagt Prof. Dr. Florian Grüner.

Direkte Nachverfolgung von Immunzellen

Erst kürzlich veröffentlichte das Team um Florian Grüner eine Studie zur direkten Nachverfolgung von Immunzellen mit Hilfe von Röntgenfluoreszenz. In enger Kooperation mit dem Universitätsklinikum Hamburg-Eppendorf soll der Ansatz künftig wichtige Einblicke in die Ursachen und Dynamik von entzündlichen, immunvermittelten Krankheiten liefern. Durch Bereitstellung von Messzeiten und Infrastruktur hat die Großforschungsanlage DESY mit seinem Synchrotron PETRA III die Forschung stark unterstützt. In zwei weiteren BMBF-Projekten sollen die Bioverteilungen neuer Wirkstoff-Kandidaten gegen Krebs gemessen und mit Hilfe künstlicher Intelligenz ausgewertet werden.

Literatur:
Staufer T, Körnig C, Liu B, et al.: Enabling X-ray fluorescence imaging for in vivo immune cell tracking. Sci Rep 13, 11505 (2023), DOI: doi.org/10.1038/s41598-023-38536-5.

Quelle: idw/Uni Hamburg

Artikel teilen

Online-Angebot der MT im Dialog

Um das Online-Angebot der MT im Dialog uneingeschränkt nutzen zu können, müssen Sie sich einmalig mit Ihrer DVTA-Mitglieds- oder Abonnentennummer registrieren.

Stellen- und Rubrikenmarkt

Möchten Sie eine Anzeige in der MT im Dialog schalten?

Stellenmarkt
Industrieanzeige