MINIFLUX

Ultimative Auflösungsgrenze in der Fluoreszenzmikroskopie

Es ist der „Heilige Gral“ der Lichtmikroskopie: die Trennschärfe dieser Methode so weit zu verbessern, dass man dicht benachbarte Moleküle einzeln auflösen kann. Forscher um Nobelpreisträger Stefan Hell vom Max-Planck-Institut für biophysikalische Chemie haben nun geschafft, was lange Zeit als unmöglich galt.

MINIFLUX

Mit MINFLUX lassen sich Bewegungen von fluoreszenzmarkierten Molekülen in einer lebenden Zelle zeitlich genauer verfolgen als mit der STED- oder PALM/STORM-Mikroskopie. | Yvan Eilers / Max-Planck-Institut für biophysikalische Chemie

Stefan Hell und sein Team haben ein neues Fluoreszenzmikroskop entwickelt, MINFLUX genannt, mit dem sich erstmals Moleküle trennen lassen, die nur Nanometer (millionstel Millimeter) voneinander entfernt sind. Dieses Mikroskop ist mehr als 100 Mal schärfer als herkömmliche Lichtmikroskopie und übertrifft selbst die bisher besten lichtmikroskopischen Methoden – STED und PALM/STORM – um das bis zu 20-Fache.

Auflösungen von einem Nanometer

„Mit MINFLUX erreichen wir Auflösungen von einem Nanometer, das ist der Durchmesser einzelner Moleküle – die ultimative Grenze dessen, was in der Fluoreszenzmikroskopie möglich ist“, erklärt Stefan Hell, Direktor am MPI für biophysikalische Chemie. „Ich bin überzeugt, dass MINFLUX-Mikroskope das Zeug dazu haben, eines der grundlegendsten Werkzeuge der Zellbiologie zu werden. Mit diesem Verfahren wird es in Zukunft möglich sein, Zellen molekular zu kartografieren und schnelle Vorgänge in ihrem Inneren in Echtzeit sichtbar zu machen. Das könnte unser Wissen über die molekularen Abläufe in lebenden Zellen revolutionieren.“

Abbes Grenze lässt sich überwinden

Der Göttinger Physiker, der auch am MPI für medizinische Forschung und am Deutschen Krebsforschungszentrum in Heidelberg arbeitet, war sich schon lange sicher, dass die Fluoreszenzmikroskopie mit ihrer Auflösung in die Dimension einzelner Moleküle vordringen kann – unter klassischer Verwendung von fokussiertem Licht und normalen Objektiven.

Aus der Forschung

Wissenschaftler am Institut für Anatomie und Zellbiologie der Medizinischen Fakultät Heidelberg haben die Opensource Software SuReSim (Super Resolution Simulation) entwickelt.

weiterlesen

Zwar hatte der Physiker Ernst Abbe 1873 formuliert, dass die Auflösung von Lichtmikroskopen auf die halbe Wellenlänge des Lichts begrenzt ist – das sind etwa 200 Nanometer. Und auch mehr als 100 Jahre später behält dieses Abbe-Limit physikalisch seine Gültigkeit. Doch Hell zeigte als Erster mit der von ihm 1994 erdachten und fünf Jahre später experimentell umgesetzten STED-Mikroskopie, dass sich diese Grenze überwinden lässt.

STED und das ein paar Jahre später entwickelte PALM/STORM erreichen in der Praxis eine Trennschärfe von etwa 20 bis 30 Nanometern – rund zehn Mal besser als das Abbe-Limit. Für die Entwicklung dieser ultrahochauflösenden Lichtmikroskopie-Techniken wurden Hell und Betzig gemeinsam mit ihrem Kollegen William E. Moerner im Jahr 2014 mit dem Nobelpreis für Chemie ausgezeichnet.