Neurale Stammzellen

Menschliche Blutzellen lassen sich direkt umprogrammieren

Wissenschaftlern vom Deutschen Krebsforschungszentrum (DKFZ) und vom Stammzellinstitut HI-STEM* in Heidelberg ist es erstmals gelungen, auf direktem Wege menschliche Blutzellen zu einem bisher unbekannten Typ von neuralen Stammzellen umzuprogrammieren.

Netzwerk aus neuralen Stammzellen

Netzwerk aus neuralen Stammzellen | M.C. Thier/DKFZ

Die induzierten Stammzellen gleichen jenen, die während der frühen Embryonalentwicklung des zentralen Nervensystems vorkommen. Sie lassen sich in der Kulturschale unbegrenzt vermehren und modifizieren und können eine wichtige Grundlage für die Entwicklung regenerativer Therapien darstellen. Stammzellen gelten als die Tausendsassas im Gewebe: Sie können sich unbegrenzt vermehren und dann – sofern es sich um pluripotente embryonale Stammzellen handelt – zu allen erdenklichen Zelltypen heranreifen. 2006 hatte der Japaner Shinya Yamanaka erkannt, dass sich solche Zellen auch im Labor herstellen lassen – aus bereits ausgereiften Körperzellen. Allein vier genetische Faktoren genügen, um das Rad der Entwicklung zurückzudrehen und so genannte induzierte pluripotente Stammzellen (iPS) herzustellen, die identische Eigenschaften haben wie embryonale Stammzellen. Für diese Entdeckung erhielt Yamanaka 2012 den Nobelpreis für Medizin.

Reprogrammierung auch mit Problemen verbunden

„Das war ein bedeutender Durchbruch für die Stammzellforschung“, sagt Andreas Trumpp, Deutsches Krebsforschungszentrum (DKFZ) und Direktor des Stammzellinstituts HI-STEM in Heidelberg. „Insbesondere für die Forschung in Deutschland, wo das Herstellen von menschlichen embryonalen Stammzellen nicht erlaubt ist.“ Stammzellen haben ein enormes Potenzial sowohl für die Grundlagenforschung als auch für die Entwicklung regenerativer Therapien, die darauf abzielen, bei Patienten zerstörtes oder krankes Gewebe wiederherzustellen. Allerdings ist die Reprogrammierung auch mit Problemen verbunden: So können pluripotente Zellen Keimbahntumore, so genannte Teratome, ausbilden.

Eine andere Möglichkeit ist, das Rad der Entwicklung nicht komplett zurückzudrehen. Trumpps Team ist es nun erstmalig gelungen, ausgereifte menschliche Zellen derart zu reprogrammieren, dass ein definierter Typ von induzierten neuralen Stammzellen entsteht, der sich auch nahezu unbegrenzt vermehren lässt. „Für die Reprogrammierung haben wir, ähnlich wie Yamanaka, vier genetische Faktoren eingesetzt, allerdings andere“, erklärt Marc Christian Thier, Erstautor der Studie. „Es handelt sich dabei um Faktoren, bei denen wir davon ausgehen konnten, dass sie eine Reprogrammierung zu einem frühen Entwicklungsstadium des Nervensystems erlauben.“

Eine Stammzelltransplantation ist für Patienten mit einer Bluterkrankung manchmal die einzige Heilungschance. Wird kein passender Spender gefunden, könnten künftig Stammzellen aus dem Labor helfen.

weiterlesen

Oftmals nicht vermehrbar

Auch in der Vergangenheit hatten andere Arbeitsgruppen Bindegewebszellen zu reifen Nervenzellen oder zu neuralen Vorläuferzellen reprogrammiert. Doch diese künstlich hergestellten Nervenzellen ließen sich oftmals nicht vermehren und waren daher für einen therapeutischen Einsatz kaum nutzbar. „Oder es handelte sich um eine heterogene Mischung aus verschiedenen Zelltypen, die es unter physiologischen Bedingungen im Körper möglicherweise gar nicht gibt“, benennt Andreas Trumpp die Probleme.

Den Wissenschaftlern um Trumpp ist es gemeinsam mit dem Stammzellforscher Frank Edenhofer von der Universität Innsbruck und der Neurowissenschaftlerin Hannah Monyer, DKFZ und Universitätsklinikum Heidelberg, gelungen, verschiedene menschliche Zellen zu reprogrammieren: Bindegewebszellen der Haut oder der Bauchspeicheldrüse sowie periphere Blutzellen. „Die Herkunft der Zellen hatte dabei keinen Einfluss auf die Eigenschaften der gewonnenen Stammzellen“, so Thier. Insbesondere die Möglichkeit, neurale Stammzellen ohne invasiven Eingriff aus dem Blut von Patienten zu gewinnen, bedeutet einen entscheidenden Vorteil für künftige Therapieansätze.

Homogener Zelltyp

Das Besondere an den reprogrammierten Zellen der Heidelberger: Es handelt sich um einen homogenen Zelltyp, der einem Stadium neuraler Stammzellen ähnelt, der während der Embryonalentwicklung des Nervensystems vorkommt. „Entsprechende Zellen existieren in der Maus und vermutlich auch im Menschen während der frühen embryonalen Gehirnentwicklung“, sagt Thier. „Wir haben mit unserer Arbeit gleichzeitig einen neuen neuralen Stammzelltyp im Säugerembryo beschrieben.“

Dabei handelt es sich um induzierte Stammzellen der Neuralplatte (induced Neural Plate Border Stem Cells, iNBSCs), der ersten Struktur des Nervensystems, die in der Embryonalentwicklung auftritt und breites Entwicklungspotenzial hat. Die iNBSC der Heidelberger Wissenschaftler sind multipotent und können sich in zwei verschiedene Richtungen weiterentwickeln. Sie können einerseits den Weg der Entwicklung zu reifen Nervenzellen und deren Versorgerzellen, den Gliazellen, einschlagen, also zu Zellen des zentralen Nervensystems werden. Andererseits können sie sich zu Zellen der Neuralleiste entwickeln, aus denen wiederum verschiedene Zelltypen hervorgehen, etwa periphere sensible Nervenzellen oder Knorpel und Knochen des Schädels.

Vermutlich als ‚Selbst‘ erkannt

Damit bilden die iNBSC eine ideale Grundlage, um für einen individuellen Patienten eine große Bandbreite an verschiedenen Zelltypen zu generieren. „Diese Zellen haben das identische Erbgut wie der Spender und werden daher vom Immunsystem vermutlich als ‚Selbst‘ erkannt und nicht abgestoßen“, erklärt Thier.

Mit der Genschere CRISP/Cas9 können die iNBSC modifiziert oder genetische Defekte repariert werden, wie die Wissenschaftler im Experiment belegen. „Sie sind daher sowohl für die Grundlagenforschung und die Suche nach neuen Wirkstoffen interessant, als auch für die Entwicklung regenerativer Therapien, etwa bei Patienten mit Erkrankungen des Nervensystems. Bis dahin wird allerdings noch eine Menge Forschungsarbeit notwendig sein“, betont Trumpp. (DKFZ, red)

*Das Heidelberger Institut für Stammzellforschung und experimentelle Medizin (HI-STEM) gGmbH ist eine Partnerschaft des DKFZ und der Dietmar Hopp Stiftung

Literatur:

Marc Christian Thier, Oliver Hommerding, Jasper Panten, et al.: Identification of Embryonic Neural Plate Border Stem Cells and Their Generation by Direct Reprogramming from Adult Human Blood Cells. Cell Stem Cell, Available online 20 December 2018, DOI: 10.1016/j.stem.2018.11.015.