Experiment an BESSY II

Kompass in magnetisch empfindlichen Bakterien

Bakterien sind ungeheuer vielfältig, nicht nur von Gestalt, sondern auch in ihren Eigenschaften. Magnetotaktische Bakterien können mit Hilfe von magnetischen Nanopartikeln das Erdmagnetfeld „spüren“.

Die magnetischen Nanoteilchen bilden im Innern der Zelle eine Kette

Die magnetischen Nanoteilchen bilden im Innern der Zelle eine Kette, zeigt die Elektronenkryotomographie. | DOI: 10.1039/C7NR08493E

Nun hat eine Kooperation aus spanischen Teams und einer Gruppe am Helmholtz-Zentrum Berlin den inneren Kompass in Magnetospirillum gryphiswaldense an der Synchrotronquelle BESSY II untersucht. Die Ergebnisse können für die Entwicklung von biomedizinischen Anwendungen wie Nanorobotern und Nanosensoren nützlich sein. Magnetotaktische Bakterien kommen in Gewässern und marinen Sedimenten vor. Magnetospirillum gryphiswaldense gehört zu den Spezies, die sich besonders einfach im Labor züchten lassen, und zwar wahlweise mit oder ohne magnetische Nanopartikel im Inneren der Zelle. „Diese Mikroorganismen sind ideale Testobjekte, um zu verstehen, wie ihr innerer Kompass sich bildet”, erklärt Lourdes Marcano, Doktorandin an der Universidad del Pais Vasco in Leioa, Spanien.

Wassertropfen auf einem Lotusblatt

Plaque auf den Zähnen oder der bräunlich-zähe Schleim in Abflussrohren sind zwei bekannte Beispiele für bakterielle Biofilme. Solche Beläge von den Oberflächen zu entfernen, ist oft sehr schwierig, unter anderem weil sie sehr stark wasserabweisende Eigenschaften haben können.

weiterlesen

Enthalten winzige Magnetit-Teilchen

Magnetospirillum-Zellen enthalten eine Anzahl von winzigen Magnetit-Teilchen (Fe3O4) mit Durchmessern um die 45 Nanometer. Diese Nanoteilchen, auch Magnetosome genannt, ordnen sich in der Regel zu einer Kette im Innern des Bakteriums an. Diese Kette aus Magnetosomen wirkt als Kompassnadel und richtet sich nach einem äußeren Magnetfeld aus. Dadurch wird auch das Bakterium entlang des Erdmagnetfelds ausgerichtet. „Diese Bakterien existieren mit Vorliebe zwischen sauerstoffreichen und sauerstoffarmen Schichten”, sagt Marcano, „ihr innerer Kompass könnte ihnen helfen, die optimalen Lebensbedingungen zu finden.”

Messungen an BESSY II
Messungen an BESSY II zeigten, wie sich unter einem äußeren Magnetfeld die Kettenglieder ausrichten. | 10.1039/C7NR08493E

Die spanischen Kooperationspartner untersuchten zunächst die Form der Magnetosomen und ihre Anordnung im Innern der Zelle mit unterschiedlichen Methoden, darunter auch der Elektronenkryotomographie.

Wie richtet sich die Kette aus?

An BESSY II untersuchten sie gemeinsam mit dem HZB-Team um Dr. Sergio Valencia isolierte Ketten aus Magnetosomen. Insbesondere wollten sie ermitteln, wie sich die die Kette zum magnetischen Feld ausrichtet, das die magnetischen Nanopartikel selbst erzeugen. „Normalerweise benötigt man hunderte von Proben mit unterschiedlich orientierten Magnetosomen-Ketten, um die magnetischen Eigenschaften dieser Bakterien zu charakterisieren“, sagt HZB-Physiker Dr. Sergio Valencia. „Aber an BESSY II können wir mit Hilfe von Photoelektronen-Emissionsmikroskopie (PEEM) und weiteren Methoden die magnetischen Eigenschaften von einzelnen Ketten präzise vermessen.“ Dies eröffnet die Möglichkeit, die Ergebnisse mit theoretischen Vorhersagen zu vergleichen.

Magnetfeld der Magnetosomen ist leicht schräg

Tatsächlich zeigten die Experimente etwas Überraschendes: Anders als bisher vermutet ist das Magnetfeld der Magnetosomen nicht parallel zur Kette ausgerichtet, sondern leicht schräg dazu. Die theoretische Modellierung der spanischen Partner deutet darauf hin, dass dieser Neigungswinkel dazu führt, dass die Magnetosomenkette eine spiralige Form hat.

Es sei sehr wichtig, die Mechanismen zu verstehen, die die Form der Kette beeinflussen, betonen die Wissenschaftler. Solche bewährten Erfindungen der Natur könnten als Vorbild und Inspiration dienen. So ließen sich möglicherweise ähnliche Mechanismen für biomedizinische Anwendungen nutzen - zum Beispiel zur Steuerung von Nanorobotern. (idw, red)

 

Literatur:

I. Orue, L. Marcano, P. Bender, et al.: Configuration of the magnetosome chain: a natural magnetic nanoarchitecture. Nanoscale (2018), DOI: 10.1039/C7NR08493E.