Vielkanalige Cochlea-Implantate mit Mikro-Leuchtdioden

Erstmaliger Einsatz im Tier
lz
Optisches Cochlea Implantat in der Hörschnecke einer Wüstenrennmaus
Optisches Cochlea Implantat in der Hörschnecke einer Wüstenrennmaus: Das Modell der spiralförmigen Hörschnecke einer Wüstenrennmaus (grau).Das Spiralganglion mit den Hörnervenzellen ist in violett, optisches Cochlea-Implantat ist in blau dargestellt. Prof. Salditt, Uni Göttingen
Newsletter­anmeldung

Bleiben Sie auf dem Laufenden. Der MT-Dialog-Newsletter informiert Sie jede Woche kostenfrei über die wichtigsten Branchen-News, aktuelle Themen und die neusten Stellenangebote.


Ein Meilenstein in der Hörforschung ist den Forschern/-innen der Universitätsmedizin Göttingen sowie der Albert-Ludwigs-Universität Freiburg gelungen. Sie kombinierten erstmals die Gentherapie in der Hörschnecke mit optischen Cochlea-Implantaten zur optogenetischen Anregung der Hörbahn in Wüstenrennmäusen.

Herkömmliche Cochlea-Implantate (CI) regen den Hörnerv hochgradig schwerhöriger oder tauber Menschen mittels elektrischen Stroms an. Die Qualität dieses künstlichen Hörens ist jedoch weit entfernt von der Qualität natürlichen Hörens. Dies zeigt sich vor allem an einem schlechten Sprachverständnis in Umgebungen mit Hintergrundgeräuschen. Auch die Musikwahrnehmung ist deutlich eingeschränkt. Eine grundlegende Verbesserung des Hörens mit einem Cochlea-Implantat könnte in Zukunft erreicht werden, wenn es gelingt, den Hörnerv zielgenau mit Licht zu reizen. Da sich Licht – im Vergleich zu elektrischem Strom – besser räumlich eingrenzen lässt, würde es eine präzisere Anregung des Hörnervs ermöglichen, betonen die Forscher.

Einen großen Schritt vorangekommen

Auf dem Weg zur Entwicklung eines optischen Cochlea-Implantats sind jetzt Göttinger Hörforscher um Prof. Dr. Tobias Moser gemeinsam mit einem von Dr. Patrick Ruther geleiteten Team von Ingenieuren des Instituts für Mikrosystemtechnik (IMTEK) der Albert-Ludwigs-Universität Freiburg einen großen Schritt vorangekommen. Da der Hörnerv natürlicherweise nicht auf Licht reagiert, muss er durch gentherapeutische Eingriffe zunächst lichtempfindlich gemacht werden. An einem am Institut für Auditorische Neurowissenschaften sowie am Exzellenzcluster Multiscale Bioimaging von molekularen Maschinen zu Netzwerken erregbarer Zellen (MBExC) der Universitätsmedizin Göttingen (UMG) entwickelten Tiermodell für menschliche Schwerhörigkeit mit gentechnisch verändertem, lichtsensitivem Hörnerv ließ sich nun ein an der Universität Freiburg entwickeltes neuartiges Cochlea-Implantat für das Hören mit Licht erstmals erproben. Die Ergebnisse zeigen: Optische CIs basierend auf Mikro-Leuchtdioden (µLED) regen den gentechnisch veränderten Hörnerv mittels Licht mit großer Präzision an.

Schritt in Richtung klinischer Anwendbarkeit

„Dies ist ein wichtiger Meilenstein bei der Entwicklung zukünftiger klinischer optischer Cochlea-Implantate. Wir sind damit einen großen Schritt in Richtung klinischer Anwendbarkeit künftiger optischer Cochlea-Implantate vorangekommen“, sagt der Senior-Autor der Publikation Prof. Dr. Tobias Moser, Direktor des Instituts für Auditorische Neurowissenschaften, UMG, und Sprecher der Exzellenzclusters Multiscale Bioimaging (MBExC).

Erstmals optische Cochlea-Implantate mit 16 µLEDs

In vorausgehenden Studien wurden bisher zur optischen Anregung des Hörnervs maximal drei Glasfasern genutzt, um mit deren Hilfe Licht von externen Lasern in die Cochlea zu leiten. In der nun veröffentlichten Studie kamen erstmals optische Cochlea-Implantate mit 16 µLEDs (Mikro-Leuchtdioden) mit einer Kantenlänge von lediglich 0,06 Millimetern zur Anregung des Hörnervs in Wüstenrennmäusen zum Einsatz. Die von einem Ingenieursteam um Dr. Patrick Ruther, Gruppenleiter am Institut für Mikrosystemtechnik an der Albert-Ludwigs-Universität Freiburg, entwickelten CIs mit speziellen und sehr kleinen Mikro-Leuchtdioden können unabhängig voneinander Licht an verschiedenen Stellen der Hörschnecke generieren.

Zukünftig verbesserte Hörqualität möglich?

Die Ergebnisse der Studie belegen: Die Anregung des genetisch veränderten Hörnervs mittels der eigens dafür entwickelten µLED-Cochlea-Implantate ist möglich. Die Stärke der Nervenzellaktivität variierte mit der verwendeten Lichtintensität und Anzahl der gleichzeitig aktivierten µLEDs. Besonders wichtig war es, eine hohe Präzision bei der Stimulation der Hörbahn nachweisen zu können, denn sie macht eine bessere Tonhöhenunterscheidung möglich. „Für die Anwendung zukünftiger optischer CIs am Patienten war die Zusammenarbeit der biomedizinischen Forschung mit der Mikrosystemtechnik ein essenzieller Schritt, und ich freue mich, dass ich zu diesen Arbeiten beitragen konnte“, sagt Dr. Alexander Dieter, einer der Erstautoren der Publikation. „Diese Ergebnisse lassen hoffen, dass künstliches Hören in der Zukunft mit verbesserter Hörqualität möglich sein wird“, so Dr. Dieter, der nach seiner Promotion am Institut für Auditorische Neurowissenschaften der UMG am Zentrum für Molekulare Neurobiologie am Universitätsklinikum Hamburg-Eppendorf (UKE) tätig ist.

Noch einige Jahre bis zum Einsatz beim Menschen

„Die Integration von miniaturisierten Lichtstrahlern mit Abmessungen, die der Dicke eines menschlichen Haares entsprechen, in einem flexiblen Cochlea-Implantat für die kleine Hörschnecke von Nagetieren ist eine technische Meisterleistung der Freiburger Kollegen“, sagt Prof. Dr. Moser. „Auch wenn die Entwicklung optischer Cochlea-Implantate für Menschen noch einige Jahre in Anspruch nehmen wird, zeigen die aktuellen Versuche bereits die im Vergleich zum elektrischen Cochlea-Implantat verbesserte Tonhöhenauflösung.“

Langzeitexperimente mit den optischen CIs

Weitere Entwicklungen sollen nun die Energieeffizienz und die optischen Eigenschaften der optischen CIs verbessern. „Technisch gesehen, gibt es nach dieser Machbarkeitsstudie noch viel für uns zu tun“, sagt Eric Klein, einer der Erstautoren und Doktorand am Institut für Mikrosystemtechnik an der Albert-Ludwigs-Universität Freiburg. „Wir wissen jedoch bereits, dass Linsensysteme mit den µLEDs kombiniert werden können und so mehr Licht präziser auf den Hörnerv gerichtet werden kann.“ Die Göttinger Hörforscher wollen nun Langzeitexperimente mit diesen optischen CIs im Tiermodell durchführen, um deren Nutzen für die Tonhöhenunterscheidung auf der Verhaltensebene zu untersuchen und die Langzeitstabilität des Ansatzes zu prüfen.

Langer Atem und visionäre Investoren nötig

Mit einer ersten klinischen Studie am Menschen rechnet Prof. Dr. Moser Mitte der 2020er Jahre. „Wir sind sehr dankbar für die umfangreiche Förderung durch das Bundesministerium für Bildung und Forschung, den Europäischen Forschungsrat und die Deutsche Forschungsgemeinschaft. Die weitere Entwicklung bis zur Anwendung am Menschen braucht einen langen Atem und visionäre Investoren“, sagt Prof. Dr. Moser. Gemeinsam mit Kollegen hat er zu diesem Zweck das Göttinger Unternehmen OptoGenTech aus der Universitätsmedizin Göttingen ausgegründet.

Hintergrund: Hören mit Cochlea-Implantat

Weltweit leiden mehr als 460 Millionen Menschen an Hörverlust oder Taubheit. Sie können akustische Signale, wie die menschliche Sprache, sehr schlecht oder nicht wahrnehmen. Ein vermindertes – oder gar nicht vorhandenes – Sprachverständnis führt dazu, dass die betroffenen Patienten nicht mit den Menschen in ihrer Umgebung kommunizieren können. Dies beeinträchtigt die Teilnahme am gesellschaftlichen Leben, den Erfolg im Beruf, den Musikgenuss, sowie die Lebensqualität im Ganzen maßgeblich. In Fällen, in denen ein vermindertes Hörvermögen oder gar Taubheit auf den Verlust der Hörsinneszellen in der Hörschnecke des Innenohrs – der Cochlea – zurückzuführen ist, können sogenannte Cochlea-Implantate (CIs) Abhilfe schaffen, die in die Hörschnecke eingesetzt werden. CIs regen den Hörnerv, der sonst von den Hörsinneszellen angeregt wird, mittels elektrischem Strom an. Dabei ahmen die Implantate natürliche Anregungsmuster des Hörnervs nach. Auf diese Weise entsteht ein künstlicher Höreindruck, der bei dem Großteil von weltweit mehr als 700.000 implantierten Patienten/-innen sogar das Verstehen von Sprache ermöglicht. An die Grenzen kommt das Hören mit einem CI allerdings in Umgebungen mit Hintergrundgeräuschen. Auch ein Musikgenuss ist den Betroffenen kaum möglich. Diese Grenzen des Hörens ergeben sich aus der relativ weiten Ausbreitung des elektrischen Anregungsstroms in der Cochlea: Große Abschnitte des Hörnervs werden gleichzeitig aktiviert und dadurch die Tonhöhen-Präzision des künstlichen Hörens begrenzt.


Literatur:

Alexander Dieter, Eric Klein, Daniel Keppeler, et al.: µLED-based optical cochlear implants for spectrally selective activation of the auditory nerve. EMBO Molecular Medicine, 29.06.2020, DOI: 10.15252/emmm.202012387.


Quelle: idw/Universitätsmedizin Göttingen - Georg-August-Universität

Artikel teilen

Online-Angebot der MT im Dialog

Um das Online-Angebot der MT im Dialog uneingeschränkt nutzen zu können, müssen Sie sich einmalig mit Ihrer DVTA-Mitglieds- oder Abonnentennummer registrieren.

Stellen- und Rubrikenmarkt

Möchten Sie eine Anzeige in der MT im Dialog schalten?

Stellenmarkt
Industrieanzeige