Virenvermehrung in 3D

Vermehrungsstrategie von Vaccinia-Viren auf atomarer Ebene

Viren-Vermehrung im Film

Um der Funktionsweise der viralen RNA-Polymerase auf die Spur zu kommen, ermittelten die Forscher ihre dreidimensionale Struktur zusätzlich während unterschiedlicher Schritte der Transkription. Mit diesen neuen Erkenntnissen ist es nun möglich, den gesamten Prozess der Viren-Vermehrung auch strukturbiologisch nachzuvollziehen. Wie in einem Film lässt sich nachverfolgen, wie diese „molekulare Maschine“ auf atomarer Ebene funktioniert und wie die einzelnen Abläufe choreografiert sind. „Besonders erstaunlich ist, wie sich die Bausteine der Maschine nach dem Start der Transkription neu anordnen, um die Synthese des RNA-Produkts voranzutreiben – dieser Komplex ist wirklich sehr dynamisch“, erklärt Hillen.

Um diese Einsichten zu erhalten, mussten Biochemiker und Strukturbiologen eng zusammenarbeiten: Die Biochemikerinnen Julia Bartuli und Kristina Bedenk an der JMU haben in einem jahrelangen Prozess den Polymerase-Komplex mit all seinen interagierenden Komponenten aufgereinigt und biochemisch charakterisiert. Die Strukturbiologen Grimm und Hillen waren anschließend dafür zuständig, die dreidimensionalen Strukturen zu ermitteln.

Kryo-Elektronenmikroskop liefert die nötigen Daten

Die entsprechenden Daten erhielten die Forscher von einem Gerät, das die Strukturanalyse in den vergangenen Jahren revolutioniert hat: einem Kryo-Elektronenmikroskop der neuesten Generation, wie es sowohl an der JMU als auch am MPI-BPC in Betrieb ist. Mit einer Spannung von 300.000 Volt schießt es Elektronen durch die auf minus 180 Grad Celsius gekühlten Proben und liefert so Bilder mit einer Auflösung, die sich in der Größenordnung von Atomen bewegt. Das Mikroskop macht es möglich, biologische Moleküle und Komplexe zu untersuchen und deren dreidimensionale Struktur zu rekonstruieren.

Rund sechs Monate mussten Grimm und Hillen an ihren Computern tüfteln, bis sie aus mehreren Terabyte Daten räumliche Modelle der Polymerase-Komplexe entwickelt hatten. „Ohne die neuen Kryo-Elektronenmikroskope an unseren Institutionen und die hervorragende Kooperation zwischen den beiden Gruppen wäre das nicht so schnell und in dieser Qualität möglich gewesen“, sagt Grimm. Mit einer 3D-Brille kann nun jeder den Komplex sich räumlich vor Augen führen, beliebig drehen und in seine Untereinheiten zerlegen.

Therapeutisches Potenzial?

Nach Ansicht der Wissenschaftler bieten die neuen Erkenntnisse jetzt unter anderem die Möglichkeit, Inhibitoren und Modulatoren zu entwickeln, um auf den viralen Vermehrungszyklus Einfluss zu nehmen. Weil die Vaccinia-Vermehrung im Zytoplasma abläuft, versprechen sie sich davon auch ein therapeutisches Potenzial. Aktuell laufen weltweit Studien, bei denen Vaccinia-Viren im Kampf gegen Krebs zum Einsatz kommen. Die Firma Genelux, die ebenfalls an der Studie beteiligt war, hat in Tierversuchen und an Patienten bereits das Potenzial speziell optimierter Vaccinia-Viren bewiesen, Tumore zu verkleinern und kleinste Metastasen aufzuspüren. Zusätzlich erwarten die Forscher neue Einblicke in die Funktionsweise des verwandten RNA-Polymerase II-Enzymkomplexes aus dem Zellkern. Was diesen betrifft, seien auch noch etliche Aspekte ungeklärt.

 

Literatur:

C. Grimm, H.S. Hillen, K. Bedenk, et al.: Structural basis of poxvirus transcription: Vaccinia RNA polymerase complexes. Cell 179 (2019) pp., 1537-1550, DOI: 10.1016/j.cell.2019.11.024.

H.S. Hillen, J. Bartuli, C. Grimm, et al.: Structural basis of poxvirus transcription: transcribing and capping Vaccinia complexes. Cell 179 (2019) pp., 1525-1536, DOI: 10.1016/j.cell.2019.11.023.


Quelle: idw/Julius-Maximilians-Universität Würzburg