Medizin

Raman-Spektren: Künstliche Intelligenz für bessere Diagnostik

Standardisierte Methoden helfen bei der Auswertung
lz
Raman-Spektralanalyse
Anleitung zur standardisierten Raman-Spektralanalyse Thomas Bocklitz Leibniz-IPHT
Newsletter­anmeldung

Bleiben Sie auf dem Laufenden. Der MTA-Dialog-Newsletter informiert Sie jede Woche kostenfrei über die wichtigsten Branchen-News, aktuelle Themen und die neusten Stellenangebote..


Raman-Spektroskopie liefert komplexe molekulare Fingerabdrücke. Künstliche Intelligenz kann bei der Analyse dieser Raman-Spektren helfen. Noch gibt es für die Auswertung keine etablierten Standards, wodurch die Anwendbarkeit im medizinischen oder biologischen Umfeld erschwert wird. Dies könnte sich ändern.

Lichtbasierte Verfahren werden zunehmend für analytische Fragestellungen in den Bereichen Gesundheit, Umwelt, Medizin und Sicherheit eingesetzt. Insbesondere die Raman-Spektroskopie ist hierfür eine geeignete Methode. Mit ihrer Hilfe lässt sich der molekulare Fingerabdruck von Proben ermitteln. Damit können zum Beispiel Materialien aufgrund ihrer spezifischen chemischen Zusammensetzung unterschieden werden. Ebenso ist es möglich, Krankheitserreger zu identifizieren oder krankes Gewebe zu erkennen. Dabei sind die zu detektierenden Signale und Signal-Unterschiede innerhalb der Messdaten nur minimal und werden von zahlreichen Faktoren beeinflusst. Für die Auswertung kommen Methoden des Machine Learning – also künstliche Intelligenz (KI) – zum Einsatz. „Um der Raman-Spektroskopie zum Durchbruch in der Anwendung zu verhelfen, braucht es standardisierte Arbeitsabläufe die möglichst robuste Ergebnisse liefern“, so Privatdozent Dr. Thomas Bocklitz, Leiter der Forschungsabteilung Photonic Data Science am Leibniz-IPHT sowie der Universität Jena. Bisher gibt es aber noch keine etablierten vereinheitlichten Normen für den Analyseprozess von Raman-Spektren.

Anleitung für die Auswertung von Raman-Spektren

In einem kürzlich veröffentlichten Beitrag liefert Bocklitz gemeinsam mit Kolleginnen und Kollegen erstmalig eine Anleitung für die Auswertung von Raman-Spektren und bezieht dabei alle Arbeitsschritte, angefangen beim experimentellen Design über die Datenaufbereitung bis hin zur Datenmodellierung und statistischen Analyse, mit ein und verweist zugleich auf mögliche Fallstricke und wie diese umgangen werden können. Dabei konnte der Physikochemiker auf seine langjährige Erfahrung bei der Entwicklung und Verfeinerung von Daten-getriebenen Methoden zurückgreifen. Mittlerweile gehört sein Team zu einem der international führenden Forschungsgruppen, die sich mit der computergestützten Auswertung von Raman-Spektren auf der konzeptionellen Ebene beschäftigen. Von Vorteil erweist sich dabei die enge Zusammenarbeit mit der Forschungsabteilung Spektroskopie/Bildgebung am Leibniz-IPHT unter Leitung von Prof. Jürgen Popp. Sie konnte ihre Kompetenz auf dem Gebiet der Raman-Spektroskopie für die Analytik und Diagnostik in den Bereichen Medizin, Lebens- und Umweltwissenschaften, Qualitäts- und Prozessanalytik sowie Pharmazie in das gemeinsame Projekt einbringen.

Gemeinsamer Ring-Versuch

Die Forscher aus Jena möchten mit der publizierten Anleitung einen Beitrag zur standardisierten Raman-Spektralanalyse liefern. Gemeinsam mit Partnern anderer Forschungseinrichtungen soll die Methodik in einem nächsten Schritt auf die Gerätevergleichbarkeit durch einen gemeinsamen Ring-Versuch fokussiert werden, indem Methoden zur Korrektur der Geräteabhängigkeit erforscht werden. Schließlich wollen die Wissenschaftlerinnen und Wissenschaftler des Leibniz-IPHT und der Universität Jena die standardisierten Methoden zur KI-basierten Auswertung von Raman-Spektren zur Entwicklung von marktreifen lichtbasierten Diagnoseverfahren und neuartigen Therapieansätzen im zukünftigen Leibniz-Zentrum für Photonik in der Infektionsforschung in Jena einsetzen.

Literatur:

Guo, S., Popp, J. & Bocklitz, T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning–based modeling. Nat Protoc 16, 5426–5459 (2021), DOI: doi.org/10.1038/s41596-021-00620-3.


Quelle: idw/Leibniz-Institut für Photonische Technologien e. V.

Artikel teilen

Online-Angebot der MTA Dialog

Um das Online-Angebot der MTA Dialog uneingeschränkt nutzen zu können, müssen Sie sich einmalig mit Ihrer DVTA-Mitglieds- oder MTA Dialog-Abonnentennummer registrieren.

Stellen- und Rubrikenmarkt

Möchten Sie eine Anzeige auf der MTA Dialog schalten?

Stellenmarkt
Rubrikenmarkt
Industrieanzeige