Auf der molekularen Streckbank

Molekulare DNA-Pinzette misst Interaktionen

Gibt es die 30-Nanometer-Faser wirklich?

Das Ergebnis könnte dazu beitragen, einen aktuellen Disput in der Wissenschaft zu klären. Die bisher gängige Theorie besagt, dass die Nukleosomen gemeinsam mit weiteren Proteinen eine Art Superspirale mit einem Durchmesser von 30 Nanometern bilden, die sogenannte 30-Nanometer-Faser. Diese nächsthöhere Strukturebene konnte aber noch nie in der lebenden Zelle beobachtet werden. Ob die DNA-Verpackung, das Chromatin, dort wirklich eine solche Superspirale annimmt, ist momentan sehr umstritten. Die geringen Kräfte zwischen den Nukleosomen, die die Forscher nun gemessen haben, sprechen eher gegen die gängige Theorie. „Unsere Daten deuten auf sehr weiche, leicht durch äußere Einflüsse deformierbare Strukturen“, sagt Dietz. „Wir können die aktuelle Diskussion mit unserer Arbeit zwar nicht abschließend klären, aber doch wichtige Hinweise hinzufügen und auch ein paar Modelle ausschließen.“

Die Frage, wie die Überstruktur der Nukleosomen aussieht, ist von fundamentaler Bedeutung. Nur die Gene, die in einer relativ wenig kompakten Chromatinstruktur liegen, sind „aktiv“, was bedeutet, dass die dort codierten Proteine wirklich in der zelleigenen Fabrik produziert werden.

In Krebszellen gerät der Ableseprozess durcheinander

„In den vergangenen zehn Jahren ist immer deutlicher geworden, dass viele Veränderungen und Mutationen, die dazu führen, dass Zellen zu Krebszellen werden, auf dieser Ebene stattfinden“, sagt Korber. In einer Krebszelle geraten die zellulären Entscheidungen, welche Gene aktiv und welche inaktiv sind, durcheinander. Abschnitte, die nicht zugänglich sein sollten, liegen frei und umgekehrt. „Wenn aber nur die Verpackung und nicht die Gene selbst fehlerhaft ist, gibt es die therapeutische Hoffnung, dass man die Verpackung wieder ändern kann.“ Eine Heilung wäre sehr viel schwieriger, wenn die Gene selbst vollständig aus dem Genom gelöscht wären.

Die Forscher wollen die molekularen Pinzetten, die sie für Messungen der Kräfte zwischen Nukleosomen verwendet haben, auch zur Untersuchung anderer Strukturen einsetzen. „In der Biologie ist es immer wichtig, welche Orientierung Strukturen zueinander haben“, sagt Korber. „Jetzt haben wir eine Art molekulare Streckbank, mit der wir gezielt die Orientierung der räumlichen Anordnung zueinander kontrollieren können.“

In einem weiteren Versuch haben die Forscher auch die Kraft gemessen, die für das Abrollen der DNA aus dem Nukleosom nötig ist. Die Forscher konnten so zeigen, dass es mithilfe des Messsystems möglich ist, sowohl Kräfte zwischen Molekülen als auch innerhalb der Moleküle zu messen. (idw, red)

 

Literatur:

Funke, et al.: Uncovering the forces between nucleosomes using DNA origami. Science Advanced, DOI: 10.1126/sciadv.1600974.

Funke, et al: Exploring Nucleosome Unwrapping Using DNA Origam. Nano Lett., 2016, 16 (12), pp 7891–7898; DOI: 10.1021/acs.nanolett.6b04169.