Thrombozyten

Mechanismus zur Entstehung von Blutplättchen entdeckt

Ein gesunder Mensch produziert rund 100 Milliarden Blutplättchen pro Tag, mehr als eine Million Blutplättchen pro Sekunde. Wie der Organismus diese enorme Leistung bewältigt, haben jetzt Physiker der Uni Bayreuth mit Hilfe von Computersimulationen herausgefunden.

Tröpfchen entwickelt sich zu einem Blutplättchen

Aus einer langgestreckten fingerförmigen Zelle (blau) bilden sich im Blutfluss einzelne Tröpfchen. Jedes Tröpfchen entwickelt sich zu einem Blutplättchen. | Grafik: UBT / Christian Bächer.

Ein bisher unentdeckter Mechanismus gewährleistet die Entstehung einer konstant hohen Zahl von Blutplättchen. Blutplättchen (Thrombozyten) sind lebenswichtige Zellen mit einem Durchmesser zwischen 0,0015 und 0,003 Millimetern. Sie haben die Aufgabe, Verletzungen der Blutgefäße möglichst schnell wieder abzudichten. Ständig patrouillieren sie durch die Blutbahn, um sofort auf undichte Stellen reagieren zu können. Damit die hierfür erforderliche hohe Zahl von Blutplättchen jederzeit zur Verfügung steht, reichen die biologischen Fähigkeiten des Organismus alleine nicht aus. Er benötigt die Unterstützung durch einen besonders effizienten physikalischen Mechanismus. Diesen Mechanismus hat jetzt ein Bayreuther Forschungsteam um Prof. Dr. Stephan Gekle zusammen mit Partnern am Universitätsklinikum Würzburg entdeckt und wissenschaftlich beschrieben.

Thrombopoese (Teil 1)

Die Bildung und Reifung der Thrombozyten ausgehend von der hämatopoetischen Stammzelle im Knochenmark wird Thrombozytopoese, kurz Thrombopoese, genannt [1].

weiterlesen

Tröpfchen werden zu Blutplättchen

Die Blutplättchen entstehen in den Blutgefäßen aus speziellen Zellen, die im Knochenmark lokalisiert sind und von dort dünne fingerartige Strukturen in die Blutbahn ausstrecken. Danach verhalte es sich ähnlich wie bei einem Wasserhahn: So wie ein dünner Wasserstrahl durch die Oberflächenspannung in einzelne Tröpfchen zerfalle, so zerbrechen die fingerartigen Strukturen in einzelne Tröpfchen. Aus jedem dieser Tröpfchen entstehe dann ein neues Blutplättchen, so die Wissenschaftler. „Mit Computersimulationen ist es möglich, diese Prozesse detailgenau nachzuvollziehen und sichtbar zu machen. Diese Grundlagenforschung hat für die Medizin einen praktischen Nutzwert – insbesondere wenn es um die Optimierung von Bioreaktoren geht, die heute für die künstliche Herstellung von Thrombozyten verwendet werden“, sagt Gekle, der an der Universität Bayreuth eine Lichtenberg-Professur für die Simulation und Modellierung von Biofluiden innehat.

Einfache physikalische Prinzipien

Das Interesse für biologisch-medizinische Fragen, verbunden mit großskaligen Computersimulationen, hat in der Bayreuther Physik Tradition. Christian Bächer, Doktorand und Absolvent des Bayreuther Studienprogramms „Biological Physics“ und Erstautor der veröffentlichten Studie, ist seit seinem Bachelor-Studium in Bayreuth davon begeistert, wie modernste IT-Technik physikalische und biologische Forschung verknüpft. „Es ist immer wieder faszinierend, wie auf den ersten Blick unglaublich kompliziert scheinende Vorgänge in Lebewesen oft aufgrund einfacher physikalischer Prinzipien verstanden werden können“, sagt Bächer.

Eine Videosequenz zur Entstehung von Blutplättchen sehen Sie hier.

 

Literatur:

Christian Bächer, Markus Bender, Stephan Gekle: Flow-accelerated platelet biogenesis is due to an elasto-hydrodynamic instability. PNAS 2020 (Proceedings of the National Academy of Sciences of the United States of America), DOI: dx.doi.org/10.1073/pnas.2002985117.

 

Quelle: idw/Universität Bayreuth