Mechanismus entschlüsselt

Magenerkrankungen durch Bakterien

Magenkrebs zählt zu den fünf tödlichsten Krebsarten: Jährlich sterben etwa 750.000 Patienten an dieser Erkrankung, so die Statistik der Weltgesundheitsorganisation WHO. Als Hauptauslöser gilt das Bakterium Helicobacter pylori (H. pylori). Wirkungsvolle Therapien gegen Magenkrebs gibt es derzeit nicht.

Helicobacter pylori

(A) Gesundes und mit Helicobacter pylori Bakterien infiziertes Epithelzellgewebe (grün), das im menschlichen Magen zerstört wurde. (B) Elektronenmikroskopie von drei vergrößerten Bakterien (hellgrün).* | A: FAU/Prof. Steffen Backert, Aileen Harrer; B: Prof. Manfred Rohde (HZI, Braunschweig)

Forscher der FAU haben nun zwei Mechanismen entschlüsselt, die zur Entstehung von Magenkrebs durch das Bakterium führen. Ihre Erkenntnisse könnten zur Entwicklung von neuen Therapieansätzen beitragen. Das Team aus internationalen Wissenschaftlern um Dr. Nicole Tegtmeyer vom Lehrstuhl für Mikrobiologie der FAU hat untersucht, wie die Bakterien die Schutzschicht im Magen zerstören. Diese Schutzschicht besteht aus dicht aneinander liegenden Epithelzellen, die uns vor der Magensäure schützen. Die Forscher haben nun entdeckt, dass die H. pylori-Bakterien ein sekretiertes Enzym, die Protease HtrA, quasi als Waffe verwenden, um diese Schutzschicht zu durchbrechen: HtrA zerschneidet drei Proteine (Occludin, Claudin-8 und E-Cadherin) und erzeugt einen Durchbruch in die Schicht aus Epithelzellen. So gelangen die H. pylori-Bakterien in tiefere, normalerweise keimfreie Gewebeschichten und richten weiteren Schaden an. Damit beginnt die Entstehung von Magenkrebs.

Einsatz der „molekularen Spritze“

Auf diesen ersten Schritt folgt jedoch ein noch viel gefährlicherer, wie die Wissenschaftler feststellten. Ein nadelartiger Fortsatz, den man als Typ IV-Sekretionssystem bezeichnet, wird anschließend aktiviert und funktioniert hierbei ähnlich einer „molekularen Spritze“: Sie injiziert über einen rezeptorabhängigen Mechanismus einen bakteriellen Giftstoff, das sogenannte CagA-Protein, an der Unterseite der Wirtszellen. Das eingeschleuste CagA wiederum programmiert die Wirtszelle so um, dass Krebs entstehen kann. Darüber hinaus beeinflusst das Protein das menschliche Immunsystem, so dass die Bakterien nicht erkannt und dadurch auch nicht eliminiert werden – ein entscheidender Weg für das dauerhafte Überleben von H. pylori im menschlichen Magen.

Helicobacter pylori

Infektionen mit Helicobacter pylori beeinflussen die mikrobielle Vielfalt in Mund und Dünndarm. Bei einem Teil der Infizierten führen sie zu Magenkrebs.

weiterlesen

Neuer Ansatz für eine Therapie gegen Magenkrebs

Dr. Tegtmeyer geht davon aus, dass diese Befunde wichtige neue Ansatzpunkte für eine anti-bakterielle Therapie aufzeigen, da HtrA und CagA sich hervorragend als neue Wirkstoffziele eignen. Die Arbeitsgruppe hat bereits begonnen, spezifische Hemmstoffe gegen HtrA zu testen. „Wir hoffen, dass entsprechende Wirkstoffe eine Infektion entweder komplett verhindern oder die CagA-Injektion unterbinden“, erläutert Tegtmeyer.

Die Veröffentlichung ist das Resultat einer mehrjährigen Forschungsarbeit mit Prof. Dr. Silja Wessler von der Universität Salzburg und Prof. Dr. Steffen Backert am Lehrstuhl für Mikrobiologie der FAU, die durch die Deutsche Forschungsgemeinschaft im Rahmen des Sonderforschungsbereichs „Schaltzellen zur Auflösung von Entzündung“ (SFB1181/TPA04 und Z02) und DFG TE 776 3-1 gefördert und in einer Kooperation mit weiteren Arbeitsgruppen aus Deutschland, Italien, Portugal und der Schweiz durchgeführt wurde. (idw, FAU, red)

*Rote Pfeile markieren die hervorstechende „Giftspritze“, wodurch letztendlich Krebs induziert werden kann.

 

Literatur:

Tegtmeyer et al.: Helicobacter pylori Employs a Unique Basolateral Type IV Secretion Mechanism for CagA Delivery. Cell Host & Microbe 22, 552–560, October 11, 2017, DOI: 10.1016/j.chom.2017.09.005.