Höchstauflösende Elektrophysiologie

Informationsübertragung im Ohr geklärt

Aufwendige Optimierung des Messaufbaus

Der resultierende wissenschaftliche Dissens erforderte dringend weitere Untersuchungen. Diese sollten idealerweise unabhängig von der Ableitung von Hörnervenzellen sein und die Freisetzung von Botenstoffen direkt an der Haarzelle untersuchen. Ein besonders geeigneter Zugang bestand in der höchstauflösenden Messung der Kapazität der Zellmembran, die als „Nanophysiologie“ die Verschmelzung einzelner synaptischer Vesikel auflösen kann.

Dr. Chad Grabner und Prof. Dr. Tobias Moser nutzten dieses in Göttingen von Nobelpreisträger Prof. Dr. Erwin Neher und Prof. Dr. Manfred Lindau entwickelte Messverfahren, um ihre Hypothese zu überprüfen. Für die Anwendung auf die Haarzellsynapse mussten sie diesen Messaufbau aufwendig optimieren. Es gelang ihnen, durch elektrische Vermessung der Membranoberfläche nachzuweisen, dass sich diese tatsächlich durch die Verschmelzung einzelner synaptischer Vesikel mit der Zellmembran vergrößert. Bisher war mit Kapazitätsmessungen von der gesamten Haarzelle nur die Verschmelzung Hunderter solcher Vesikel nachweisbar, da jedes Vesikel während der Botenstofffreisetzung die ohnehin schon winzige Oberfläche der Zelle um weniger als ein 1/2.000.000 (ca. 40 x 10-18 Farad) erweitert.

Statisch-unabhängige Freisetzung einzelner synaptischer Vesikel

„Es war sehr aufwendig, die Messempfindlichkeit auf das erforderliche Niveau zu bringen, aber es hat sich gelohnt“, sagt Dr. Chad Grabner, Erstautor der Studie. „Die Ergebnisse legen die statisch-unabhängige Freisetzung einzelner synaptischer Vesikel an der Synapse nahe und brechen so mit dem aktuellen Dogma.“

„Das Hochleistungssystem der Haarzellsynapse ist auf Effizienz getrimmt. Die Möglichkeit, dass ein einzelnes von der Haarzelle freigesetztes synaptisches Vesikel ausreicht, einen Nervenimpuls in der Hörnervenzelle auszulösen, ist faszinierend. Eine solche Effizienz ist unseres Wissens nach bislang einzigartig in der Natur“, sagt Seniorautor Prof. Dr. Tobias Moser, Max Planck Fellow und designierter Sprecher des Göttinger Exzellenzclusters „Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells (MBExC)“. „Die Studie zeigt auch, wie die Nanophysiologie die Analyse von kleinsten Funktionseinheiten von Zellen ermöglicht und so zu fundamentalen Einsichten in das Nervensystem beiträgt. Somit ist sie paradigmatisch für das geplante MBExC.“

 

Quelle: Universitätsmedizin Göttingen, 23.11.2018

 

Originalveröffentlichung

Chad P Grabner & Tobias Moser (2018) Individual synaptic vesicles mediate stimulated exocytosis from cochlear inner hair cells. PNAS, im Druck.
doi: 10.1073/pnas.1811814115