Höchstauflösende Elektrophysiologie

Informationsübertragung im Ohr geklärt

Sinnesforscher entschlüsseln das elementare Datenpaket der Informationsübertragung im Innenohr und weisen damit eine einzigartige Effizienz beim Hören nach.

Einzelne Vesikel reichen aus, um in der Hörnervenzelle einen Nervenimpuls auszulösen. | Getty Images/iStockphoto

Göttinger Wissenschaftler sind dem Verständnis, wie der Mensch hört, einen wichtigen Schritt nähergekommen. Die Umwandlung von akustischer Information in ein Nervensignal erfolgt an speziellen Kontaktstellen (den sogenannten Bandsynapsen) zwischen Haarsinneszellen und Hörnervenzellen im Innenohr.

Hirnströme der Kinder mit Cochlea-Implantaten

In Deutschland kommen jedes Jahr etwa 2.000 Kinder schwerhörig oder taub zur Welt. Einigen von ihnen kann ein Cochlea-Implantat helfen. Bisher war jedoch unklar, welche Prozesse bei den Kindern beim Sprachlernen ablaufen, wenn sie damit später als ihre normalhörenden Altersgenossen beginnen.

weiterlesen

Dort wird Information über den Schall mittels Freisetzung von Bläschen (synaptischen Vesikeln) weitergegeben, die mit Botenstoffen gefüllt sind. Anders als bisher von Hörforschern angenommen, konnten die Göttinger Sinnesforscher nun nachweisen, dass bei der Umwandlung von akustischer Information in ein Nervensignal an der Haarzellsynapse im Innenohr überwiegend einzelne synaptische Vesikel freigesetzt werden. Damit ist das elementare Datenpaket der hochspezialisierten Haarzellsynapse grundsätzlich vergleichbar mit dem anderer Synapsen des Nervensystem.

Die Forschungsergebnisse der Untersuchungen unter der Leitung von Prof. Dr. Tobias Moser, Direktor des Instituts für Auditorische Neurowissenschaften an der Universitätsmedizin Göttingen (UMG) und Sprecher des Sonderforschungsbereichs 889 „Zelluläre Mechanismen Sensorischer Verarbeitung“, und Dr. Chad Grabner in der Forschungsgruppe „Synaptische Nanophysiologie“ am Max-Planck-Institut für biophysikalische Chemie wurden im November in der Fachzeitschrift Proceedings of the National Academy of Sciences veröffentlicht.

Einzigartige Effizienz des Hörvorgangs

Die neuen Ergebnisse der Wissenschaftler deuten gleichzeitig auf eine einzigartige Effizienz des Hörvorgangs hin: Denn die Erkenntnisse legen nahe, dass es an der Haarzellsynapse bei moderatem Schall sogar ausreicht, nur ein einzelnes, mit dem Botenstoff Glutamat gefülltes synaptisches Vesikel freizusetzen, um in der Hörnervenzelle einen Nervenimpuls auszulösen. Bislang galt über zwei Jahrzehnte hinweg die Annahme, dass jedes Freisetzungsereignis im Mittel sechs synaptische Vesikel umfasst, die – über einen unbekannten Mechanismus koordiniert – gleichzeitig mit der Zellmembran verschmelzen Dies beruhte unter anderem auf der Beobachtung, dass die durch Botenstoffe aktivierten Nervenzellen neben „einfachen“ auch „komplexere“ Antworten von vergleichbarer Stärke zeigten, welche bisher durch leicht zeitversetzte Freisetzung mehrerer Vesikel erklärt wurden.

Damit wird klar, dass einzelne Vesikel ausreichen, um in der Hörnervenzelle einen Nervenimpuls auszulösen. Daran zeigt sich, dass die Hörnervenzelle extrem empfindlich für Glutamat ist, dessen Freisetzung sehr effizient genutzt wird. Diese hohe Effizienz hat aber nach Einschätzung der Forscher auch ihren Preis: Zu lauter Schall kann diese empfindliche Zelle durch Glutamat-Übererregung unwiederbringlich schädigen.

Im Jahr 2014 hatten Göttinger Wissenschaftler des Sonderforschungsbereichs (SFB) 889 und des Bernstein Zentrums für Theoretische Neurowissenschaften auf der Grundlage von Experimenten und Computer-Simulationen erstmals Zweifel an der Annahme von sechs Vesikeln als kleinstmögliches Signal angemeldet und eine alternative Hypothese vorgestellt: die statisch-unabhängige Freisetzung einzelner synaptischer Vesikel. Hier würden die „komplexen“ Antworten durch ein schnelles Öffnen und Schließen einer kleinen Pore entstehen, durch welche das Vesikel seine Botenstoffe ausschütte.